Критерий согласия пирсона. Проверка простых гипотез критерием хи-квадрат Пирсона в MS EXCEL. Проверка гипотезы о показательном распределении

Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

В некоторых случаях исследователь не знает заранее, по какому именно закону распределены наблюдаемые значение исследуемого признака. Но у него могут быть достаточно веские причины предполагать, что распределение подчинено тому или иному закону, например, нормальному или равномерному. В этом случае выдвигаются основная и альтернативная статистические гипотезы следующего вида:

    H 0: распределение наблюдаемого признака подчинено закону распределения A ,

    H 1: распределение наблюдаемого признака отличается от A ;

где в качестве A может выступать тот или иной закон распределения: нормальный, равномерный, показательный и т. д.

Проверка гипотезы о предполагаемом законе распределения проводится при помощи так называемых критериев согласия. Имеется несколько критериев согласия. Наиболее универсальным из них является -критерий Пирсона, так как он применим к любому виду распределения.

-Критерий Пирсона

Обычно эмпирические и теоретические частоты различаются. Случайно ли расхождение частот? Критерий Пирсона дает ответ на этот вопрос, правда, как и любой статистический критерий, он не доказывает справедливость гипотезы в строго математическом смысле, а лишь устанавливает на определенном уровне значимости ее согласие или несогласие с данными наблюдений.

Итак, пусть по выборке объема получено статистическое распределение значений признака, где- наблюдаемые значения признака,- соответствующие им частоты:

Суть критерия Пирсона состоит в вычислении критерия по следующей формуле:

где - это число разрядов наблюдаемых значений, а- теоретические частоты соответствующих значений.

Понятно, что чем меньше разности , тем ближе эмпирическое распределение к эмпирическому, поэтому, чем меньше значение критерия, тем с большей достоверностью можно утверждать, что эмпирическое и теоретическое распределение подчинены одному закону.

Алгоритм критерия Пирсона

Алгоритм критерия Пирсона несложен и состоит в выполнении следующих действий:

Итак, единственным нетривиальным действием в этом алгоритме является определение теоретических частот. Они, разумеется, зависят от закона распределения, поэтому - для различных законов определяются по-разному.

Критерий согласия для проверки гипотезы о законе распределения исследуемой случайной величины.Во многих практических задачах точный закон распределения неизвестен.Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому.Данная гипотеза требует статистической проверки, по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X – исследуемая случайная величина. Требуется проверить гипотезу H 0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия.Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

,

где N – число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i – номер интервала, p t i - вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, p e i – вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H 0 отвергается.В противном случае она принимается на заданном уровне значимости.Здесь k – число наблюдений, p – число оцениваемых параметров закона распределения.

Пирсона позволяет осуществлять проверку эмпирического и теоретического (либо другого эмпирического) распределений одного признака. Данный критерий применяется, в основном, в двух случаях:

Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);

Для сопоставления двух эмпирических распределений одного и того же признака.

Идея метода – определение степени расхождения соответствующих частот n i и ; чем больше это расхождение, тем больше значение

Объемы выборок должны быть не меньше 50 и необходимо равенство сумм частот

Нулевая гипотеза H 0 ={два распределения практически не различаются между собой}; альтернативная гипотеза – H 1 ={расхождение между распределениями существенно}.

Приведем схему применения критерия для сопоставления двух эмпирических распределений:

Критерий - статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.


В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:

§ , гипотеза выполняется.

§ (попадает в левый "хвост" распределения). Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка и гипотеза : выборка распределена равномерно на , тогда генератор нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза выполняется.

§ (попадает в правый "хвост" распределения) гипотеза отвергается.

Определение: пусть дана случайная величина X .

Гипотеза : с. в. X подчиняется закону распределения .

Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: . По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения (предполагаемого в гипотезе) производится с помощью специально подобранной функции -критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):

Гипотеза : Х n порождается функцией .

Разделим на k непересекающихся интервалов ;

Пусть - количество наблюдений в j-м интервале: ;

Вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;

- ожидаемое число попаданий в j-ый интервал;

Статистика: - Распределение хи-квадрат с k-1 степенью свободы.

Критерий ошибается на выборках с низкочастотными (редкими) событиями.Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями.Этот способ называется коррекцией Йетса (Yates" correction).

Критерий согласия Пирсона (χ 2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n j для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой n j ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где p j - вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности p j нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины.Например, при нормальном распределении первый интервал простирается до -∞, а последний - до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α , найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e 1 - m - 1. Здесь e 1 - число интервалов после объединения; m - число параметров, оцениваемых по рассматриваемой выборке.Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают.При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений.В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями.Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы.Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

группы ИС-09-1

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).


Итоговая таблица для вычислений будет выглядеть так:

χ2 = ∑(Э - Т)² / Т

n = (R - 1), где R – количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.

Приложение

Критические точки распределения χ2

Таблица 1

Заключение

Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. – в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.

Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах – курса "Эконометрика", поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных.

Теория вероятности и математическая статистика дают фундаментальные знания для прикладной статистики и эконометрики.

Они необходимы специалистам для практической работы.

Я рассмотрела непрерывную вероятностную модель и постаралась на примерах показать ее используемость.

Список используемой литературы

1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. – 479с.

3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. – 656с.

4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 – 272с.

5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. – 314с.

6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М. : Наука, 1975. – 111с.

7. Мостеллер Ф. Вероятность. М. : Мир, 1969. – 428с.

8. Яглом А.М. Вероятность и информация. М. : Наука, 1973. – 511с.

9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. – 256с.

10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. – 543с.

11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. – 655с.

12. http://psystat.at.ua/ - Статистика в психологии и педагогике. Статья Критерий Хи-квадрат.

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F (x ) и эмпирическим распределением F * п (x ) , которая приближенно подчиняется закону распределения χ 2 . Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда.

Итак, пусть выборка представлена статистическим рядом с количеством разрядов M . Наблюдаемая частота попаданий в i - й разряд n i . В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет F i . Разность между наблюдаемой и ожидаемой частотой составит величину (n i F i ). Для нахождения общей степени расхождения между F (x ) и F * п (x ) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда

Величина χ 2 при неограниченном увеличении n имеет χ 2 -распределение (асимптотически распределена как χ 2). Это распределение зависит от числа степеней свободы k , т.е. количества независимых значений слагаемых в выражении (3.7). Число степеней свободы равно числу y минус число линейных связей, наложенных на выборку. Одна связь существует в силу того, что любая частота может быть вычислена по совокупности частот в оставшихся M –1 разрядах. Кроме того, если параметры распределения неизвестны заранее, то имеется еще одно ограничение, обусловленное подгонкой распределения к выборке. Если по выборке определяются S параметров распределения, то число степеней свободы составит k = M S –1.

Область принятия гипотезы Н 0 определяется условием χ 2 < χ 2 (k ; a ) , где χ 2 (k ; a ) – критическая точка χ2-распределения с уровнем значимости a . Вероятность ошибки первого рода равна a , вероятность ошибки второго рода четко определить нельзя, потому что существует бесконечно большое множество различных способов несовпадения распределений. Мощность критерия зависит от количества разрядов и объема выборки. Критерий рекомендуется применять при n >200, допускается применение при n >40, именно при таких условиях критерий состоятелен (как правило, отвергает неверную нулевую гипотезу).

Алгоритм проверки по критерию

1. Построить гистограмму равновероятностным способом.

2. По виду гистограммы выдвинуть гипотезу

H 0: f (x ) = f 0 (x ),

H 1: f (x ) ¹ f 0 (x ),

где f 0 (x ) - плотность вероятности гипотетического закона распределения (например, равномерного, экспоненциального, нормального).

Замечание . Гипотезу об экспоненциальном законе распределения можно выдвигать в том случае, если все числа в выборке положительные.

3. Вычислить значение критерия по формуле

,

где
частота попадания вi -тый интервал;

p i - теоретическая вероятность попадания случайной величины вi - тый интервал при условии, что гипотезаH 0 верна.

Формулы для расчета p i в случае экспоненциального, равномерного и нормального законов соответственно равны.

Экспоненциальный закон

. (3.8)

При этом A 1 = 0, B m = +¥.

Равномерный закон

Нормальный закон

. (3.10)

При этом A 1 = -¥, B M = +¥.

Замечания . После вычисления всех вероятностей p i проверить, выполня­ется ли контрольное соотношение

Функция Ф(х )- нечетная. Ф(+¥) = 1.

4. Из таблицы " Хи-квадрат" Приложения выбирается значение
, гдеa - заданный уровень значимости (a = 0,05 или a = 0,01), а k - число степеней свободы, определяемое по формуле

k = M - 1 - S .

Здесь S - число параметров, от которых зависит выбранный гипотезой H 0 закон распределения. Значения S для равномерного закона равно 2, для экспоненциального - 1, для нормального - 2.

5. Если
, то гипотезаH 0 отклоняется. В противном случае нет оснований ее отклонить: с вероятностью 1 - b она верна, а с вероятностью - b неверна, но величина b неизвестна.

Пример3 . 1. С помощью критерия c 2 выдвинуть и проверить гипотезу о законе распределения случайной величины X , вариационный ряд, интерваль­ные таблицы и гистограммы распределения которой приведены в примере 1.2. Уровень значимости a равен 0,05.

Решение . По виду гистограмм выдви­гаем гипотезу о том, что случайная величина X распределена по нормальному закону:

H 0: f (x ) = N (m , s);

H 1: f (x ) ¹ N (m , s).

Значение критерия вычисляем по формуле:

(3.11)

Как отмечалось выше, при проверке гипотезы предпочтительнее использовать равновероятностную гистограмму. В этом случае

Теоретические вероятности p i рассчитываем по формуле (3.10). При этом полагаем, что

p 1 = 0,5(Ф((-4,5245+1,7)/1,98)-Ф((-¥+1,7)/1,98)) = 0,5(Ф(-1,427)-Ф(-¥)) =

0,5(-0,845+1) = 0,078.

p 2 = 0,5(Ф((-3,8865+1,7)/1,98)-Ф((-4,5245+1,7)/1,98)) =

0,5(Ф(-1,104)+0,845) = 0,5(-0,729+0,845) = 0,058.

p 3 = 0,094; p 4 = 0,135; p 5 = 0,118; p 6 = 0,097; p 7 = 0,073; p 8 = 0,059; p 9 = 0,174;

p 10 = 0,5(Ф((+¥+1,7)/1,98)-Ф((0,6932+1,7)/1,98)) = 0,114.

После этого проверяем выполнение контрольного соотношения

100 × (0,0062 + 0,0304 + 0,0004 + 0,0091 + 0,0028 + 0,0001 + 0,0100 +

0,0285 + 0,0315 + 0,0017) = 100 × 0,1207 = 12,07.

После этого из таблицы "Хи - квадрат" выбираем критическое значение

.

Так как
то гипотезаH 0 принимается (нет основания ее отклонить).

Случайные статьи

Вверх