Вселенная как голограмма. Вселенная — голограмма? Компьютерная модель галактики

Согласно этой теории, во Вселенной существуют так называемые гравитационные волны - возмущения гравитационного поля, "рябь" ткани пространства-времени. Распространяясь со скоростью света, гравитационные волны предположительно порождают неравномерные движения масс крупных астрономических объектов: образование или столкновения черных дыр взрыв сверхновых и т.п. Ненаблюдаемость гравитационных волн наука объясняет тем, что гравитационные воздействия слабее электромагнитных. Ученые, затеявшие свой эксперимент в далеком 2002 году, предполагали обнаружить эти гравитационные волны, которые впоследствии могли бы стать источником ценной информации о так называемой темной материи, из которой в основном и состоит наш Вселенная. До сих пор GEO600 не удавалось обнаружить гравитационные волны, однако, судя по всему, ученым с помощью прибора удалось сделать крупнейшее за последние полвека открытие в области физики.

В течение многих месяцев специалисты никак не могли объяснить природу странных шумов, мешающих работе интерферометра, пока внезапно объяснение не предложил ученый-физик из научной лаборатории Fermilab . Согласно предположению Крейга Хогана, аппарат GEO600 столкнулся с фундаментальной границей пространственно-временного континуума – точкой, в котором пространство-время перестает быть сплошным континуумом, описанным Эйнштейном, и распадается на "зерна", словно фотография, увеличенная в несколько, превращается в скопление отдельных точек. "Похоже, что GEO600 наткнулся на микроскопические квантовые колебания пространства-времени", - предположил Хоган.

Если эта информация кажется вам недостаточно сенсационной, послушаем дальше: "Если GEO600 наткнулся на то, что я предполагаю, это означает, что мы живем в гигантской космической голограмме".

Сама идея того, что мы живем в голограмме, может показаться нелепой и абсурдной, однако она – лишь логическое продолжение нашего понимания природы черных дыр, основанного на вполне доказуемой теоретической базе. Как ни странно, "теория голограммы" существенно помогла бы физикам наконец объяснить, как устроена Вселенная на фундаментальном уровне.

Привычные нам голограммы (как, к примеру, на кредитках) наносятся на двухмерную поверхность, которая начинает казаться трехмерной при попадании на нее луча света под определенным углом. В 1990-х годах лауреат Нобелевской премии по физике Герардт Хуфт из Утрехтского университета (Нидерланды) и Леонард Зусскинд из Стэнфордского университета (США) предположили, что схожий принцип может быть применен ко Вселенной в целом. Наше ежедневное существование само по себе может являться голографической проекцией физических процессов, которые происходят в двухмерном пространстве.

В "голографический принцип" структуры Вселенной очень трудно поверить: сложно вообразить, что вы просыпаетесь, чистите зубы, читаете газеты или смотрите телевизор только потому, что где-то на границах Вселенной столкнулись между собой несколько гигантских космических объектов. Никто пока не знает, что для нас будет означать "жизнь в голограмме", однако физики-теоретики имеют множество причин считать, что отдельные аспекты голографических принципов функционирования Вселенной – реальность.

Выводы ученых основываются на фундаментальном изучении свойств черных дыр, которые проводились знаменитым физиком-теоретиком Стивеном Хокингом совместно с Роджером Пенроузом. В середине 1970-х годов ученый изучал фундаментальные законы, которые управляют Вселенной и показал, что из теории относительности Эйнштейна следует такое пространство-время, которое начинается в Большом Взрыве и заканчивается в черных дырах. Эти результаты указывают на необходимость объединения изучения теории относительности с квантовой теорией. Одним из следствий такого объединения является утверждение, что черные дыры на самом деле не совсем "черные": на самом деле они испускают излучение, которое приводит к их постепенному испарению и полному исчезновению. Таким образом, возникает парадокс, названный "информационным парадоксом черных дыр": сформировавшаяся черная дыра теряет массу, излучая энергию. Когда черная дыра исчезает, вся поглощенная ей информация утрачивается. Однако, согласно законам квантовой физики, информация не может быть утрачена полностью. Контраргумент Хокинга: интенсивность гравитационных полей черных дыр непонятным пока образом соответствует законам квантовой физики. Коллега Хокинга, физик Бекенштейн, выдвинул важную гипотезу, которая способствует разрешению этого парадокса. Он высказал гипотезу, что черная дыра обладает энтропией, пропорциональной площади поверхности ее условного радиуса. Это некая теоретическая площадь, которая маскирует черную дыру и отмечает точку невозвращения материи или света. Физики-теоретики доказали, что микроскопические квантовые колебания условного радиуса черной дыры могут кодировать информацию, находящуюся внутри черной дыры таким образом потери информации, находящейся в черной дыре в момент ее испарения и исчезновения, не происходит.

Таким образом, можно предположить, что трехмерная информация об исходном веществе может быть полностью закодирована в двухмерный радиус образовавшейся после ее гибели черной дыры, примерно как трехмерное изображение объекта кодируется с помощью двухмерной голограммы. Зускинд и Хуфт пошли еще дальше, применив эту теорию к структуре Вселенной, основываясь на том, что космос также обладает условным радиусом – граничной плоскостью, за пределы которой свет еще не успел проникнуть за 13, 7 млрд. лет существования Вселенной. Более того, Хуан Малдасена, физик-теоретик из Принстонского университета, сумел доказать, что в гипотетической пятимерной Вселенной будут действовать те же физические законы, что и в четырехмерном пространстве.

Согласно теории Хогана, голографический принцип существования Вселенной радикально меняет привычную нам картину пространства-времени. Физики-теоретики долгое время считали, что квантовые эффекты способны заставить пространство-время хаотично пульсировать в ничтожных масштабах. При таком уровне пульсации ткань пространственно-временного континуума становится "зернистой" и словно сделанной из мельчайших частиц, похожих на пиксели, только в сотни миллиардов миллиардов раз меньше протона. Это мера длины известна как "планковская длина" и являет собой цифру 10-35 м. В настоящее время фундаментальные физические законы проверены опытным путём до расстояний 10-17 , и Планковская длина считалась недостижимой, до тех пор пока Хоган не осознал, что голографический принцип меняет все. Если пространственно-временной континуум представляет собой зернистую голограмму, тогда Вселенную можно представить как сферу, внешняя поверхность которой покрыта мельчайшими поверхностями длиной 10-35 м, каждая из которой несет в себе частичку информации. Голографический принцип гласит, что количество информации, покрывающей внешнюю часть сферы-Вселенной должно совпадать с количеством битов информации, содержащейся внутри объемной Вселенной.

Поскольку объем сферической Вселенной гораздо больше, чем вся ее внешняя поверхность, возникает вопрос, как возможно соблюсти этот принцип? Хоган предположил, что биты информации, из которых состоит "внутренность" Вселенной, должны иметь размеры большие, чем Планковская длина. "Иными словами, голографическая Вселенная похожа на нечеткую картинку", - говорит Хоган.

Для тех, кто занимается поиском мельчайших частиц пространства-времени это хорошая новость. "В противоположность всеобщим ожиданиям, микроскопическая квантовая структура вполне доступна для изучения", - отметил Хоган. В то время как частицы, размеры которых равны Планковской длине, невозможно обнаружить, голографическая проекция этих "зерен" равна приблизительно 10-16 м. Когда ученый сделал все эти выводы, он задумался над тем, возможно ли экспериментальным путем определить эту голографическую размытость пространства-времени. И тут на помощь пришел GEO600.

Приборы вроде GEO600, способные к обнаружению гравитационных волн, работают по следующему принципу: если сквозь него проходит гравитационная волна, он растянет пространство в одном направлении и сожмет его в другом. Для измерения волны ученые направляют лазерный луч через специальное зеркало, называемое "разделителем лучей". Оно делить лазерный луч на два луча, которые проходят сквозь 600-метровые перпендикулярные стержни и возвращаются обратно. Вернувшиеся назад лучи вновь соединяются в один и создают интерференционную картину светлых и темных участков, где световые волны либо пропадают, либо усиливают друг друга. Любое изменение в позиции этих участков указывает на то, что относительная длина стержней изменилась. Экспериментальным образом можно обнаружить изменения длины меньше диаметра протона.

Если прибор GEO600 действительно обнаружил голографический шум от квантовых колебаний пространства-времени, он станет для исследователей палкой о двух концах: с одной стороны, шум станет помехой для их попыток "поймать" гравитационные волны. С другой стороны, это может означать, что исследователям удалось сделать гораздо более фундаментальное открытие, чем предполагалось вначале. Впрочем, наблюдается некая ирония судьбы: прибор, сконструированный для того, чтобы улавливать волны, являющиеся следствием взаимодействия крупнейших астрономических объектов, обнаружил нечто столь микроскопическое, как "зерна" пространства-времени.

Чем дольше ученые не могут разгадать тайну голографического шума, тем острее встает вопрос о проведении дальнейших исследованиях в этом направлении. Одной из возможностей для исследований может стать конструирование так называемого атомного интерферометра, принцип работы которого схож с GEO600, однако вместо лазерного луча будет использоваться низкотемпературный поток атомов.

Что будет означать для человечества обнаружение голографического шума? Хоган уверен, что человечество находится в шаге от обнаружения кванта времени. "Это - мельчайший из возможных интервалов времени: Планковская длина, деленная на скорость света", - говорит ученый. Впрочем, больше всего возможное открытие поможет исследователям, пытающимся объединить квантовую механику и гравитационную теорию Эйнштейна. Наибольшей популярностью в научном мире пользуется теория струн, которая, как полагают ученые, поможет описать все происходящее во Вселенной на фундаментальном уровне.

Хоган согласен с тем, что если голографические принципы будут доказаны, то ни один подход к изучению квантовой гравитации отныне не будет рассматриваться вне контекста голографических принципов. Напротив, это станет толчком к доказательствам теории струн и теории матрицы. "Возможно, в наших руках первые свидетельства того, как пространство-время следует из квантовой теории", - отметил ученый.

Как появилась Вселенная и что ее ждет? Каково наше место в Большом Космосе? На эти вопросы у нашей цивилизации нет ответов. Гипотезы о Большом взрыве, о параллельности множества вселенных, о голографичности мира - так и остаются недоказанными предположениями.

Впервые «безумная» идея о вселенской иллюзорности родилась у физика Лондонского университета Дэвида Бома, соратника Альберта Эйнштейна, в середине XX века.

Согласно его теории весь мир устроен примерно так же, как голограмма.

Как любой сколь угодно малый участок голограммы содержит в себе все изображение трехмерного объекта, так и каждый существующий объект «вкладывается» в каждую из своих составных частей.

Из этого следует, что объективной реальности не существует, - сделал тогда ошеломляющее заключение профессор Бом. - Даже несмотря на ее очевидную плотность, Вселенная в своей основе - фантазм, гигантская, роскошно детализированная голограмма.

Напомним, что голограмма представляет собой трехмерную фотографию, сделанную с помощью лазера. Чтобы ее изготовить, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину (чередование минимумов и максимумов лучей), которая может быть зафиксирована на пленке.

Готовый снимок выглядит как бессмысленное переслаивание светлых и темных линий. Hо стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение исходного предмета.

Трехмерность не единственное замечательное свойство, присущее голограмме.

Если голограмму с изображением, например, дерева разрезать пополам и осветить лазером, каждая половина будет содержать целое изображение того же самого дерева точно такого же размера. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом.

В отличие от обычной фотографии, каждый участок голограммы содержит информацию о всем предмете, но с пропорционально соответствующим уменьшением четкости.

Принцип голограммы «все в каждой части» позволяет нам совершенно по-новому подойти к вопросу организованности и упорядоченности, - объяснял профессор Бом. - На протяжении почти всей своей истории западная наука развивалась с идеей о том, что лучший способ понять физический феномен, будь то лягушка или атом, - это рассечь его и изучить составные части.

Голограмма показала нам, что некоторые вещи во Вселенной не поддаются исследованию таким образом. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше точностью.

И ТУТ ПОЯВИЛСЯ ВСЁ ОБЪЯСНЯЮЩИЙ АСПЕКТ

К «безумной» идее Бома подтолкнул еще и нашумевший в свое время эксперимент с элементарными частицами. Физик из Парижского университета Алан Аспект в 1982 году обнаружил, что в определенных условиях электроны способны мгновенно сообщаться друг с другом независимо от расстояния между ними.

Hе имеет значения, десять миллиметров между ними или десять миллиардов километров. Каким-то образом каждая частица всегда знает, что делает другая. Смущала только одна проблема этого открытия: оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света.

Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила физиков сильно засомневаться в работах Аспекта.

Но Бом сумел найти объяснение. По его словам, элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются некими таинственными сигналами между собой, а потому, что их разделенность иллюзорна. Он пояснял, что на каком-то более глубоком уровне реальности такие частицы являются не отдельными объектами, а фактически расширениями чего-то более фундаментального.

«Свою замысловатую теорию профессор для лучшего уяснения иллюстрировал следующим примером, - писал автор книги «Голографическая Вселенная» Майкл Талбот. - Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума.

Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов - отдельные объекты. Поскольку камеры передают изображения под разными углами, рыбы выглядят по-разному. Hо, продолжая наблюдение, через некоторое время вы обнаружите, что между двумя рыбами на разных экранах существует взаимосвязь.

Когда одна рыба поворачивает, другая также меняет направление движения, немного по-другому, но всегда соответственно первой. Когда одну рыбу вы видите анфас, другую непременно в профиль. Если вы не владеете полной картиной ситуации, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, что это не факт случайного совпадения».

Явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, -объяснял Бом феномен опытов Аспекта, - более высокой размерности, чем наша, как в аналогии с аквариумом. Раздельными мы видим эти частицы только потому, что мы видим лишь часть действительности.

А частицы - не отдельные «части», но грани более глубокого единства, которое в конечном итоге так же голографично и невидимо, как упоминавшееся выше дерево.

И поскольку все в физической реальности состоит из этих «фантомов», наблюдаемая нами Вселенная сама по себе есть проекция, голограмма.

Что еще может нести в себе голограмма - пока не известно.

Предположим, например, что она - это матрица, дающая начало всему в мире, как минимум, в ней есть все элементарные частицы, которые принимали или будут когда-то принимать любую возможную форму материи и энергии - от снежинок до квазаров, от голубых китов до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все.

Хотя Бом и признавал, что у нас нет способа узнать, что еще таит в себе голограмма, он брал на себя смелость утверждать, что у нас нет причин, чтобы предположить, что в ней больше ничего нет. Другими словами, возможно, голографический уровень мира - просто одна из ступеней бесконечной эволюции.

МНЕНИЕ ОПТИМИСТА

Психолог Джек Корнфилд, рассказывая о своей первой встрече с покойным ныне учителем тибетского буддизма Калу Ринпоче, вспоминает, что между ними состоялся такой диалог:

Не могли бы вы мне изложить в нескольких фразах самую суть буддийских учений?

Я бы мог это сделать, но вы не поверите мне, и чтоб понять, о чем я говорю, вам потребуется много лет.

Все равно, объясните, пожалуйста, так хочется знать. Ответ Ринпоче был предельно краток:

Вас реально не существует.

ВРЕМЯ СОСТОИТ ИЗ ГРАНУЛ

Но можно ли «пощупать» эту иллюзорность инструментами? Оказалось, да. Уже несколько лет в Германии на гравитационном телескопе, сооруженном в Ганновере (Германия), GEO600 ведутся исследования по обнаружению гравитационных волн, колебаний пространства-времени, которые создают сверхмассивные космические объекты.

Ни одной волны за эти годы, впрочем, найти не удалось. Одна из причин - странные шумы в диапазоне от 300 до 1500 Гц, которые на протяжении длительного времени фиксирует детектор. Они очень мешают его работе.

Исследователи тщетно искали источник шума, пока с ними случайно не связался директор Центра астрофизических исследований в лаборатории имени Ферми Крейг Хоган.

Он заявил, что понял, в чем дело. По его словам, из голографического принципа следует, что пространство-время не является непрерывной линией и, скорее всего, представляет собой совокупность микрозон, зерен, своего рода квантов пространства-времени.

А точность аппаратуры GEO600 сегодня достаточна для того, чтобы зафиксировать колебания вакуума, происходящие на границах квантов пространства, тех самых зерен, из которых, если голографический принцип верен, состоит Вселенная, - объяснил профессор Хоган.

По его словам, GEO600 как раз и наткнулся на фундаментальное ограничение пространства-времени - то самое «зерно», вроде зернистости журнальной фотографии. И воспринимал это препятствие как «шум».

И Крейг Хоган вслед за Бомом убежденно повторяет:

Если результаты GEO600 соответствуют моим ожиданиям, то все мы действительно живем в огромной голограмме вселенских масштабов.

Показания детектора пока в точности соответствуют его вычислениям, и, кажется, научный мир стоит на пороге грандиозного открытия.

Специалисты напоминают, что однажды посторонние шумы, выводившие из себя исследователей в Bell Laboratory - крупном исследовательском центре в области телекоммуникаций, электронных и компьютерных систем - в ходе экспериментов 1964 года, уже стали предвестником глобальной перемены научной парадигмы: так было обнаружено реликтовое излучение, доказавшее гипотезу о Большом взрыве.

А доказательства голографичности Вселенной ученые ожидают, когда заработает прибор «Голометр» на полную мощь. Ученые надеются, что он увеличит количество практических данных и знаний этого необыкновенного открытия, относящегося пока все же из области теоретической физики.

Детектор устроен так: светят лазером через расщепитель луча, оттуда два луча проходят через два перпендикулярных тела, отражаются, возвращаются назад, сливаются вместе и создают интерференционную картину, где любое искажение сообщает об изменении отношения длин тел, так как гравитационная волна проходит через тела и сжимает или растягивает пространство неодинаково в разных направлениях.

- «Голометр» позволит увеличить масштаб пространства-времени и увидеть, подтвердятся ли предположения о дробной структуре Вселенной, основанные чисто на математических выводах, - предполагает профессор Хоган.

Первые данные, полученные с помощью нового аппарата, начнут поступать в середине этого года.

МНЕНИЕ ПЕССИМИСТА

Президент Лондонского королевского общества, космолог и астрофизик Мартин Рис: «Рождение Вселенной для нас навсегда останется загадкой»

Нам не понять законы мироздания. И не узнать никогда, как появилась Вселенная и что ее ждет. Гипотезы о Большом взрыве, якобы породившем окружающий нас мир, или о том, что параллельно с нашей Вселенной может существовать множество других, или о голографичности мира - так и останутся недоказанными предположениями.

Несомненно, объяснения есть всему, но нет таких гениев, которые смогли бы их понять. Человеческий разум ограничен. И он достиг своего предела. Мы даже сегодня столь же далеки от понимания, к примеру, микроструктуры вакуума, сколько и рыбы в аквариуме, которым абсолютно невдомек, как устроена среда, в которой они живут.

У меня, например, есть основания подозревать, что у пространства - ячеистая структура. И каждая его ячейка в триллионы триллионов раз меньше атома. Но доказать или опровергнуть это, или понять, как такая конструкция работает, мы не можем. Задача слишком сложная, запредельная для человеческого разума.

Неоднородность Вселенной доказана

Появляется все больше свидетельств того, что некоторые части Вселенной могут быть особенными.
Одним из краеугольных камней современной астрофизики является космологический принцип.

Согласно нему, наблюдатели на Земле видят то же самое, что наблюдатели из любой другой точки Вселенной, и что законы физики везде одинаковы.

Множество наблюдений подтверждают эту идею. К примеру, Вселенная выглядит более-менее одинаково во всех направлениях, с примерно одинаковым распределением галактик по всем сторонам.

Но в последние годы, некоторые космологи стали сомневаться в верности этого принципа.

Они указывают на данные, полученные в ходе изучения сверхновых 1 типа, которые удаляются от нас со все увеличивающейся скоростью, что указывает не только на то, что Вселенная расширяется, но и на все большее ускорение этого расширения.

Любопытно, что ускорение не является единым для всех направлений. В некоторых направлениях Вселенная ускоряется быстрее, чем в других.

Но насколько можно доверять этим данным? Возможно, что в некоторых направлениях мы наблюдаем статистическую погрешность, которая исчезнет при правильном анализе полученных данных.

Ронг-Джен Кай и Жонг-Лианг Туо из института теоретической физики при Китайской академии наук в Пекине, еще раз проверили данные полученные от 557 сверхновых из всех частей Вселенной и провели повторные расчеты.

Сегодня они подтвердили наличие неоднородности. Согласно их расчетам, быстрей всего ускорение происходит в созвездии Лисички северного полушария. Эти данные согласуются с данными других исследований, согласно которым существует неоднородность в космическом микроволновом фоновом излучении.

Это может заставить космологов прийти к смелому выводу: космологический принцип ошибочен.

Возникает волнующий вопрос: почему Вселенная неоднородна и как это отразится на существующих моделях космоса?

GlobalScience.ru

Экранизации с фрагментами стройной космогонической теории Неоднородности Вселенной Н.В.Левашова:

Познав единство законов микро- и макрокосмоса , вы узнаете, что такое в самом деле «чёрные дыры», надо полагать, иначе будете относиться к истории человечества да и к ошибкам - большим и незначительным - великих учёных, признанных авторитетов и забытых многими провидцев, гипотезы которых, быть может, давали человечеству неизмеримо больший шанс, чем твёрдые выводы академических светил. Вы найдёте здесь объяснение того, что такое Вселенная, но, главное, вы сами должны сделать вывод о дороге, которой человек может и должен идти.

В фильме затронута тема так называемых астральных животных, какой вред или пользу они могут принести живым существам при симбиозе с ними.

Многообразие жизни. Серия "Человек". Часть I I

Все наши мысли, желания, а главное поступки влияют на процессы приводящие к карме в виде тяжёлых болезней и врождённых увечий. И к сожалению, никакое покаяние и моление перед иконами не снимает последствий содеянного.

«Представьте, что все, что вы видите, чувствуете и слышите в трех измерениях (и с учетом вашего восприятия времени) на самом деле исходит из двумерного плоского поля», — говорит Костас Скендерис из Саутгемптонского университета и один из участников исследования.

«Принцип аналогичен тому, который мы можем встретить в обычных голограммах, где трехмерное изображение закодировано в двумерной плоскости. Такое, например, свойственно голограммам на тех же кредитных картах. Однако в нашем случае речь идет уже о том, что вся Вселенная закодирована таким образом».

Причина, по которой физики вообще заинтересовались голографическим принципом, в то время как стандартная модель Большого Взрыва выглядит куда понятнее и логичнее, заключается в том, что в последней есть некоторые пробелы, но эти пробелы являются настолько фундаментальными, что замедляют процесс нашего понимания всех физических законов в целом и еще в зародыше.

Согласно сценарию Большого Взрыва, химические реакции привели к очень масштабному расширению изначального пространства, приведшего к формированию нашей Вселенной. И на раннем этапе ее рождения скорость этого расширения (инфляции) была колоссальной. В то время как большинство физиков поддерживают теорию космической инфляции, пока еще никому не удалось выяснить точный механизм, отвечавший за это резкое расширение Вселенной со скоростью быстрее скорости света и роста с субатомного уровня до нынешнего. Все произошло практически мгновенно.

Беда в том, что ни одна из наших нынешних теорий не способна объяснить, как это все работает в связке. Взять, например, общую теорию относительности, которая отлично объясняет поведение больших объектов, но при этом не способна объяснить поведение самых маленьких. Это уже среда квантовой механики, которая, в свою очередь, не способна объяснить многие другие вещи. Все это печалит еще сильнее, когда необходимо объяснить, как в буквальном смысле вся существующая во Вселенной масса и энергия изначально были сосредоточены в крошечном пространстве. Одна гипотеза пытается объединить сразу оба явления, другая, о квантовой гравитации, говорит, что если можно отбросить одно пространственное измерение, то можно отбросить и гравитацию в ваших вычислениях, чтобы упростить задачу по расчетам.

Голографический принцип

«Все это голограмма. В том смысле, что существует описание Вселенной, говорящее о том, что вероятность даже уменьшенного числа измерений соответствует всему тому, что мы можем видеть после Большого Взрыва», — говорит Афшорди.

Чтобы проверить, насколько хорошо голографический принцип Вселенной справляется с объяснением всего того, что произошло в сам момент Большого Взрыва и уже после этого события, команда ученых создала компьютерную модель с одним временем и двумя пространственными измерениями.

Когда исследователи ввели в эту модель известные нам данные о Вселенной, включая информацию о наблюдениях за реликтовым излучением – тепловое излучение, возникшее спустя всего несколько сотен тысяч лет после Большого Взрыва, – они не обнаружили никаких противоречий. Все подошло идеально. В том числе и реликтовое излучение. Модель на самом деле отлично воссоздала поведение тонких отрезков реликтового излучения, но не смогла воссоздать более масштабные «срезы» Вселенной шириной более 10 градусов. Для этого потребуется наличие более сложной модели.

Ученые объясняют, что очень далеки от доказательства того, что наша вселенная на самом деле когда-то была голографической проекцией. Однако перед нами теперь имеется факт получения эмпирических данных, собранных на базе реальных знаний о Вселенной. Этот факт может в конечном итоге стать началом открытия возможности, которая позволит объяснить упущенные части в физических законах с точки зрения двумерного представления. Другими словами, работа Афшорди и его коллег лишь доказывает, что необдуманно отказываться от вероятности голографической модели Вселенной — это совсем уж непростительная роскошь.

Означает ли это, что все мы сейчас живем в сложной голограмме? Согласно Афшорди, это не совсем так. Их модель способна описать происходившее только в самой ранней эпохе Вселенной, но не нынешнее ее состояние. Тем не менее теперь стоит подумать, каким образом вещи из двумерного пространства способны проецироваться в трехмерное измерение, если, конечно же, говорить о Вселенной, а не о кредитных карточках.

«Я бы сказал, что мы не живем голограмме. Но не стоит отбрасывать вероятность того, что мы могли из нее выйти. Тем не менее в 2017 году вы определенно живете в трех измерениях», — подытожил Афшорди.

Существует ли объективная реальность, или Вселенная - голограмма?

В 1982 году произошло замечательное событие. Исследовательская группа под руководством Alain Aspect при университете в Париже представила эксперимент, который может оказаться одним из самых значительных в 20 веке. Вы не услышите об этом в вечерних новостях. Скорее всего, вы даже не слышали имя Alain Aspect, разве что вы имеете обычай читать научные журналы, хотя есть люди, поверившие в его открытие и способные изменить лицо науки.

Aspect и его группа обнаружили, что в определенных условиях элементарные частицы, например, электроны, способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Не имеет значения, 10 футов между ними или 10 миллиардов миль.

Каким-то образом каждая частица всегда знает, что делает другая. Проблема этого открытия в том, что оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света. Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила некоторых физиков пытаться объяснить опыты Aspect сложными обходными путями. Но других это вдохновило предложить более радикальные объяснения.

Например, физик лондонского университета David Bohm считает, что согласно открытию Aspect, реальная действительность не существует, и что несмотря на ее очевидную плотность, вселенная в своей основе - фикция, гигантская, роскошно детализированная голограмма.

Чтобы понять, почему Bohm сделал такое поразительное заключение, нужно сказать о голограммах. Голограмма представляет собой трехмерную фотографию, сдлеланную с помощью лазера.
Чтобы сделать голограмму, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину, которая может быть зафиксирована на пленке.

Сделанный снимок выглядит как бессмысленное чередование светлых и темных линий. Но стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение снятого предмета.

Трехмерность - не единственное замечательное свойство голограмм. Если голограмму разрезать пополам и осветить лазером, каждая половина будет содержать целое первоначальное изображение. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит всю информацию о предмете.

Принцип голограммы "все в каждой части" позволяет нам принципиально по-новому подойти к вопросу организованности и упорядоченности. Почти на всем своем протяжении западная наука развивалась с идеей о том, что лучший способ понять явление, будь то лягушка или атом, - это рассечь его и изучить составные части. Голограмма показала нам, что некоторые вещи во вселенной не могут это нам позволить. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше размером.

Эти идеи вдохновили Bohm на иную интерпретацию работ Aspect. Bohm уверен, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что из разделенность есть иллюзия. Он поясняет, что на каком-то более глубоком уровне реальности такие частицы - не отдельные объекты, а фактически продолжения чего-то более фундаментального.

Чтобы это лучше уяснить, Bohm предлагает следующую иллюстрацию.

Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов - отдельные объекты. Но, продолжая наблюдение, через некоторое время вы обрнаружите, что между двумя рыбами на разных экранах существует взаимосвязь.

Когда одна рыба меняется, другая также меняется, немного, но всегда соответственно первой; когда одну рыбу вы видите "в фас", другую непременно "в профиль". Если вы не знаете, что это один и тот же аквариум, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, чем что это случайность. То же самое, утверждает Bohm, можно экстраполировать и на элементарные частицы в эксперименте Aspect.

Согласно Bohm, явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, более высокой размерности, чем наша, по аналогии с аквариумом. И, он добавляет, мы видим частицы раздельными потому, что мы видим лишь часть действительности. Частицы - не отдельные "части", но грани более глубокого единства, которое в конечном итоге голографично и невидимо подобно объекту, снятому на голограмме. И поскольку все в физической реальности содержится в этом "фантоме", вселенная сама по себе есть проекция, голограмма.

Вдобавок к ее "фантомности", такая вселенная может обладать и другими удивительными свойствами. Если разделение частиц - это иллюзия, значит, на более глубоком уровне все предметы в мире бесконечно взаимосвязаны. Электроны в атомах углерода в нашем мозгу связаны с электронами каждого лосося, который плывет, каждого сердца, которое стучит, и каждой звезды, которая сияет в небе.

Все взаимопроникает со всем, и хотя человеческой натуре свойственно все разделять, расчленять, раскладывать по полочкам, все явления природы, все разделения искусственны и природа в конечном итоге есть безразрывная паутина.

В голографическом мире даже время и пространство не могут быть взяты за основу. Потому что такая характеристика, как положение, не имеет смысла во вселенной, где ничто не отделено друг от друга; время и трехмерное пространство - как изображения рыб на экранах, которые должно считать проекциями.

С этой точки зрения реальность - это суперголограмма, в которой прошлое, настоящее и будущее существуют одновременно. Это значит, что с помощью соответствующего инструментария можно проникнуть вглубь этой супер-голограммы и увидеть картины далекого прошлого.

Что еще может нести в себе голограмма - еще неизвестно. Например, можно представить, что голограмма - это матрица, дающая начало всему в мире, по самой меньшей мере, там есть любые элементарные частицы, существующие либо могущие существовать, - любая форма материи и энергии возможна, от снежинки до квазара, от синего кита до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все.

Недавно физики представили расчеты, согласно которым пространства с плоской метрикой (а это в том числе и наша вселенная) могут быть голограммами. В своей работе авторы использовали идею AdS/CFT - соответствия (Anti - de Sitter / Conformal Field Theory Correspondence) между конформной теорией поля и гравитацией. На частном примере такого соответствия ученые показали эквивалентность описания этих двух теорий
. Так что же такое голографическая вселенная и при чем тут черные дыры, дуальность и теория струн?
В основе этой работы лежит так называемый голографический принцип, утверждающий, что для математического описания какого-либо мира достаточно информации, которая содержится на его внешней границе: представление об объекте большей размерности в этом случае можно получить из "Голограмм", имеющих меньшую размерность. Предложенный в 1993 году нидерландским физиком Герардом"т хоофтом принцип применительно к теории струн (называемой также M - теорией или современной математической физикой) воплотился в идее AdS/CFT - соответствия, на которое в 1998 году указал американский физик - теоретик аргентинского происхождения Хуан малдасена.
В этом соответствии описание гравитации в пятимерном пространстве анти - де ситтера - пространстве отрицательной кривизны (то есть с геометрией Лобачевского) - при помощи теории суперструн оказывается эквивалентным некоторому пределу четырехмерной суперсимметричной теории Янга - миллса, определенной на четырехмерной границе пятимерия. В несуперсимметричном случае четырехмерная теория Янга миллса составляет основу стандартной модели - теории наблюдаемых взаимодействий элементарных частиц. Теория же суперструн, базирующаяся на предположении существования на планковских масштабах гипотетических одномерных объектов - струн - описывает пятимерие. Приставка "Супер" при этом означает наличие симметрии, в которой у каждой элементарной частицы имеется свой суперпартнер с противоположной квантовой статистикой.
Эквивалентность описания означает, что между наблюдаемыми теориями существует однозначная связь - дуальность. Математически это проявляется в наличии соотношения, позволяющего рассчитать параметры взаимодействий частиц (или струн) одной из теорий, если известны таковые для другой. При этом никакого другого способа это сделать для первой теории нет. Идею дуальности и голографический принцип иллюстрируют два примера, демонстрирующие удобство таких аналогий при описания явлений в масштабах от элементарных частиц до вселенной. Вероятно, такое удобство имеет фундаментальные основания и является одним из свойств природы.
Согласно голографическому принципу, две вселенные различных размерностей могут иметь эквивалентное описание. Физики показали это на примере AdS/CFT между пятимерным пространством анти де - ситтера и его четырехмерной границей. В результате оказалось, что пятимерное пространство описывается как четырехмерная голограмма на своей границе. Черная дыра в таком подходе, существуя в пятимерии, в четырехмерии проявляет себя в виде излучения.
Первый пример - дуальность описания черных дыр и конфайнмента кварков ("не Вылетания" кварков - элементарных частиц, участвующих в сильных взаимодействиях - адронов. Опыты по рассеиванию на адронах других таких частиц показали, что они состоят из двух (мезоны) или трех (барионы - таких, как например, протоны и нейтроны) кварков, которые не могут находиться, в отличие от других элементарных частиц, в свободном состоянии.
Работа физиков из Индии, Австрии и Японии основана на вычислении энтропии реньи для соответствия между двумерной конформной теорией поля (описывающей элементарные частицы) и гравитацией в трехмерном пространстве анти - де ситтера. Ученые на примере квантовой запутанности (которая проявляется тогда, когда свойства объектов, первоначально связанных между собой, оказываются скоррелированными даже при их разнесении на расстояние между собой) показали, что энтропия принимает одинаковые значения в плоской квантовой гравитации и в двумерной теории поля.
Такая не наблюдаемость кварка видна в компьютерных расчетах, однако теоретического обоснования пока не имеет. Математическая формулировка этой задачи известна как проблема "Массовой Щели" в калибровочных теориях, и это одна из семи задач тысячелетия, сформулированных институтом Клэя. К настоящему моменту только одну из сформулированных задач (гипотезу Анри пуанкаре) удалось решить - это сделал более десяти лет назад российский математик Григорий Перельман.
При удалении друг от друга взаимодействие между кварками только усиливается, тогда как при приближении их друг к другу - слабеет. Это свойство, названное асимптотической свободой, предсказали американские физики - теоретики и лауреаты нобелевской премии Фрэнк вильчек, Дэвид гросс и Дэвид политцер. Теория струн предлагает эффектное описание этого явления с использованием аналогии между "не Вылетанием" частиц из-под горизонта событий черной дыры и удержанием кварков в адронах. Однако такое описание приводит к не наблюдаемым эффектам и поэтому применяется лишь в качестве наглядного примера.

Случайные статьи

Вверх